Lagrange constraints for transient finite element surface contact
نویسندگان
چکیده
منابع مشابه
A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics
In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.
متن کاملLagrange Interpolation and Finite Element Superconvergence
Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the fin...
متن کاملFinite Element and Boundary Element Methods for Transient Acoustic Problems
The paper focuses on the numerical treatment of transient acoustic problems using finite element (FE) and boundary element (BE) methods. The FE method relies on a pressure formulation and the use of an implicit integration schemes for solving the related second-order differential system. The procedure is shown on cavity (interior) problems but can be extended to exterior problems using the DtN ...
متن کاملQuasi-Optimal Approximation of Surface Based Lagrange Multipliers in Finite Element Methods
We show quasi-optimal a priori convergence results in the Land H−1/2-norm for the approximation of surface based Lagrange multipliers such as those employed in the mortar finite element method. We improve on the estimates obtained in the standard saddle point theory, where error estimates for both the primal and dual variables are obtained simultaneously and thus only suboptimal a priori estima...
متن کاملLocal Interpolation by a Quadratic Lagrange Finite Element in 1d
We analyse the error of interpolation of functions from the space H(a, c) in the nodes a < b < c of a regular quadratic Lagrange finite element in 1D by interpolants from the local function space of this finite element. We show that the order of the error depends on the way in which the mutual positions of nodes a, b, c change as the length of interval [a, c] approaches zero.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 1991
ISSN: 0029-5981,1097-0207
DOI: 10.1002/nme.1620320107